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The three-dimensional motion observed by Chen & Chen (1997) in the convection cells
generated by sideways heating of a solute gradient is further examined by experiments
and linear stability analysis. In the experiments, we obtained visualizations and
PIV measurements of the velocity of the fluid motion in the longitudinal plane
perpendicular to the imposed temperature gradient. The flow consists of a horizontal
row of counter-rotating vortices within each convection cell. The magnitude of this
secondary motion is approximately one-half that of the primary convection cell.
Results of a linear stability analysis of a parallel double-diffusive flow model of the
actual flow show that the instability is in the salt-finger mode under the experimental
conditions. The perturbation streamlines in the longitudinal plane at onset consist
of a horizontal row of counter-rotating vortices similar to those observed in the
experiments.

1. Introduction
When a tank of fluid that is stably stratified by a solute gradient is heated from one

side, the primary convective motion, which consists of a series of nearly horizontal
convection cells, is generated by double-diffusive effects when the critical condition is
exceeded. The first systematic study of this phenomenon was carried out by Thorpe,
Hutt & Soulsby (1969). They conducted experiments in a tall, narrow tank filled with
stably stratified salt solution. The horizontal temperature difference across the tank
was slowly increased until the onset of a vertical array of convection cells all along the
tank. A linear stability analysis was carried out for the asymptotic state of very large
solute Rayleigh numbers, the conditions under which the experiments were conducted.
Good agreement was obtained between the stability predictions and the experimental
observations. Chen, Briggs & Wirtz (1971) studied the stability of a solute gradient
subjected to impulsive lateral heating in a wide tank. In their experiments, they
observed simultaneous onset of convection cells at the hot wall and subsequent
intrusion into the fluid interior when the critical condition was exceeded. In their
problem, the natural length scale was the height rise, h, of a heated parcel of fluid in
the initially stratified fluid, defined as h = α∆T/(−βdS/dz), in which α and β are the
volumetric expansion coefficients due to heat and solute, respectively. In a series of
15 experiments, they determined the critical condition in terms of a Rayleigh number,
Rh, based on the length scale h for onset of instability to be 15 000 ± 2500. They
also determined that the average thickness of the convection layer is proportional
to h. For the Rayleigh number range investigated, 1.4 × 104 < Rh < 5.4 × 104,

† With an Appendix by O. S. Kerr.



2 C. L. Chan, W-Y. Chen and C. F. Chen

the layer thickness varied from 0.67h to 0.97h. Later investigations by Huppert &
Turner (1980) and Huppert, Kerr & Hallworth (1984) found that the cell thickness
decreases as Rh increases and asymptotes to 0.6h at Rh ' 106–109. There have been
a number of interesting experimental investigations, stability analyses, and numerical
simulations of similar double-diffusive problems since the 1970s. For a review of
such work, see Chen & Chen (1997) and Chen (1999). It is worth noting that all
the stability analyses and numerical simulations were carried out assuming two-
dimensional motion.

Within each convection cell, there is a counterflow of relatively warm and solute-rich
fluid over colder and solute-poor fluid, a situation conducive to the onset of salt-finger
instability. Such instabilities will cause secondary motion in the longitudinal plane
perpendicular to the temperature gradient. This phenomenon was observed by Chen
& Chen (1997) by flow visualization in the horizontal plane. The seeded particles
collect into bands aligned in the flow direction, and these bands are generated as soon
as the primary convection cells are formed. Such three-dimensional motion was also
observed by Biello (1997).

Stimulated by the observations of three-dimensional motion in these convec-
tion cells, Kerr (2000) extended his earlier two-dimensional stability analysis of
steady double-diffusive interleaving intrusions (Kerr 1992) by seeking possible three-
dimensional instabilities in such flows. In order to make the problem tractable, he
considered a steady basic state in a constant-thickness intrusion parallel to the fastest-
growing nodes. Results show that three-dimensional instabilities exist in the form of
cells in the longitudinal plane perpendicular to the direction of intrusion and such
instabilities are slightly more unstable than the two-dimensional instabilities under
suitable conditions.

Recently, we performed experiments to obtain visualizations of the secondary
motion as well as quantitative velocity measurements by PIV. The visualizations are
images of particle traces in the transverse plane (parallel to the initial temperature
gradient and the gravity vector) and in the longitudinal plane (perpendicular to the
initial temperature gradient and the gravity vector). The former shows the primary
motion and the latter the secondary motion in each convection cell. The results show
that the secondary motion in the longitudinal plane consists of a horizontal row
of vortices with axes aligned in the direction of the temperature gradient. Velocity
vectors were obtained by analysing the particle images by PIV. Results show that the
velocity magnitude of the secondary motion is approximately one-half that of the
primary motion.

In order to gain an understanding of the instability mechanisms that caused the
secondary motion, a linear stability analysis was carried out for a steady, parallel
double-diffusive flow model approximating the primary motion in a convection cell.
The analysis was made separately in the longitudinal and transverse planes. The
results show that the instability in both planes may onset in either the diffusive
or the salt-finger mode. For a fluid with a large Lewis number, such as the salt-
water solution, salt-finger instability is the most critical mode. Furthermore, the
stability boundary for the salt-finger mode in the longitudinal plane is very close
to that in the transverse plane, in agreement with the findings of Kerr (2000).
Perturbation streamlines in the longitudinal plane at onset show a horizontal row
of counter-rotating vortices in the middle of the cell, and the critical wavelength
is in general agreement with the observations. In the following, the experimental
investigation and the stability analysis are presented in detail, followed by a summary
and conclusions.
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2. Experiments
2.1. Apparatus and procedures

The experiments were carried out in a tank 5 cm wide × 9.5 cm high × 9.5 cm long,
the same tank used by Chen & Chen (1997) with one modification. One of the
9.5 cm×9.5 cm copper sidewalls was replaced by a Plexiglas wall for flow visualization
purposes. The fluid was a stratified salt solution with the initial concentration of the
fluid varying from 2% to 5% salt. The stratification was achieved by successively
introducing 21 equal volumes of solutions with decreasing salt content into the tank.
The solution was seeded with 10 µm diameter particles for flow visualization. The
procedure is described in detail in Chen & Chen (1997). Once the tank was filled, a
Plexiglas cover was placed on top of the tank in contact with the solution to prevent
evaporation. The tank was left standing for one hour to allow diffusion to smooth
out the salt gradient before the start of the experiment.

To initiate the experiment, the temperature of the copper wall was brought to 6 ◦C
above that of the fluid in the tank by circulating pre-heated liquid from a constant-
temperature bath. For flow visualization, a light sheet generated by a 1.5 W Argon
ion laser together with a cylindrical lens can be placed either parallel (transverse
view) or perpendicular (longitudinal view) to the temperature gradient. The particles
illuminated by the light sheet were imaged by a CCD camera and displayed on a
monitor and the data were recorded on a tape. Time-lapse photographs were taken
of the particle images, and the recorded data were later processed by MACPIV†
software to obtain velocity vectors and constant vorticity contours. The thickness of
the light sheet was 0.3 cm in the transverse plane and 1.0 cm in the longitudinal plane
in order to capture the particles within the light sheet for a reasonable period of
time. Different experiments with identical conditions were run to obtain images in
the transverse and longitudinal planes and shadowgraphs in the transverse plane.

2.2. Results

Since the temperature of the Plexiglas wall opposite the heating wall was not con-
trolled, it is important that data should be taken at early stages of the experiment.
The results presented here are all from the data taken within the first 10 min of
the experiment when the convection cells reached halfway across the tank. Although
particle-trace images were monitored and stored for approximately 30 min into each
experiment, the data for the last 20 min were for observation purposes only.

Shadowgraphs and particle trace images in the transverse plane and longitudinal
plane are shown in figures 1(a), 1(b), and 1(c), respectively, at 4, 6, and 9 min after
the start of the experiment. The shadowgraphs (figure 1a) show the entire tank with
heating from the left wall. The particle trace images were obtained with time exposures
of 4 s and the field of view was enlarged by placing a magnifying lens in front of the test
tank. The dimension of the images in the transverse plane is 2.8 cm high×2.0 cm wide,
with the heating wall appearing on the right. The dimensions for the images in the
longitudinal plane are 1.8 cm high× 2.3 cm wide. These dimensions were determined
by placing a lined grid in the tank prior to filling it with fluid.

The shadowgraphs in figure 1(a) show that, at 4 min, there were 15 convecting
layers and, by 6 min, the number of layers decreased to 11 due to the merging of
some layers. These layers had advanced to approximately the middle of the tank by
9 min. It is noted that the same number of convecting layers persisted for 30 min

† MACPIV was developed by Professor Jeffrey Jacobs and his students and is briefly described
in a paper by Zuercher, Jacobs & Chen (1998).
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(a) (b) (c)

Figure 1. Flow visualization at 4 min, 6 min, and 9 min (from top to bottom) into the experiments:
(a) shadowgraph; (b) particle trances in the transverse plane; (c) particle traces in the longitudinal
plane.

before any further merging took place. The particle traces in the transverse plane
(figure 1b) show four convecting cells above the date marker at 4 min, with one of the
layers being merged into its neighbours. At 6 min, there were only three vigorously
convecting layers remaining. Circulation in each of the cells had intensified at 9 min.
The particle trace images in the longitudinal plane are shown in figure 1(c). The centre
of the 1 cm thick laser sheet was located at 1.25 cm from the heating surface. For this
much enlarged view, the image of the lined grid placed in the tank prior to the start
of the experiment showed that aberrations of the image were present in the peripheral
areas. Only the central region above the date marker is aberration free. Motion in
the longitudinal plane was first detected at 4 min, as indicated by lateral movements
of particles above the marker. At 6 min, vortices were forming in the central row and,
by 9 min, they were well developed with axes parallel to the temperature gradient.

The images in the transverse and longitudinal planes at 9 min were processed by
MACPIV and the results are shown in figures 2 and 3. The image, the velocity
vectors, and the constant vorticity contours are shown in each of the figures, with
black and grey lines denoting positive and negative vorticity, respectively. It is seen
that the velocity magnitudes in the transverse plane are generally about twice as
large as those in the longitudinal plane. The maximum magnitudes for these two
cases are 16.6 mm s−1 and 7.3 mm s−1, while the average magnitudes of all the velocity
vectors evaluated are 5.4 mm s−1 and 2.1 mm s−1. These results show that the flow is
three-dimensional in nature and should be properly accounted for in any numerical
simulations of the problem.
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Figure 2. Flow image, vorticity contours and velocity vectors, in the transverse plane at t = 9 min.

Figure 3. Flow image, vorticity contours and velocity vectors, in the longitudinal plane at
t = 9 min.

The primary convection in the transverse plane consists of nearly horizontal elon-
gated convection cells advancing toward the cold wall. For the secondary flow in the
longitudinal plane, the image was cropped to 1.15 cm high × 2.3 cm wide, showing
only two layers. There are four pairs of vortices in the bottom row, with an average
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Figure 4. (a) Vertical temperature and solute concentration distribution 39 min into an experiment
with ∆T = 10 ◦C from Chen & Chen (1997). (b) Idealized temperature and solute concentration
distribution for the parallel flow model. Interfacial regions are bordered by dashed lines.

wavelength of 0.5 cm. The thickness of the layer is 0.6 cm, yielding a wavelength-to-
thickness ratio of λ/D = 0.83. By the way, Chen & Chen (1997) observed that there
were usually approximately 20 particle bands in a cross-sectional area of 5 cm×9.5 cm,
in agreement with the present observations.

3. Stability analysis
3.1. Idealized flow model

The experimental results were obtained in a transient state as the primary convection
cells were advancing toward the cold wall. But even at this early stage, the flow
away from the hot wall is relatively warmer and richer in solute than the return
flow. It is reasonable to expect that this particular vertical distribution of temperature
and solute concentration is the cause of the instability that eventually develops into
the secondary flow observed in the experiment. To render the problem amenable to
a linear stability analysis while retaining the essential physics of the problem, we
consider the fully developed double-diffusive convection in each of the convection
cells.

When the flow is fully developed, the tank is filled by a vertical array of nearly
horizontal convection cells. In each of the cells, the flow in the upper (lower) half is
away from (toward) the hot wall and it is warmer (cooler) and solute rich (poor). The
solute concentration and temperature distributions in such a fully developed cellular
flow have been obtained by Chen & Chen (1997) and are shown in figure 4(a).
These measurements were made at 39 min into an experiment with an initial solute
gradient of −0.316% cm−1 (the same as in the present experiments) and a maintained
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10 ◦C lateral temperature difference. Focusing our attention on the regular layers in
the upper half of the tank just above the merging layers, the solute concentration
shows that each cell is bordered above and below by interfacial layers with large
concentration gradients. Within these borders, the concentration is S-shaped. The
overall distribution shows a negative vertical gradient, reflecting the initial value.
The overall temperature distribution shows a slight positive gradient due to sideways
heating and is S-shaped within each cell. It is noted here that there was a slight
vertical displacement between the temperature and salinity probes.

Within each cell, the fluid flowing away from the hot wall along the top is
continuously losing heat and solute to the counterflowing fluid in the cell above. The
converse is true for the fluid flowing from the cold wall at the bottom of each cell.
Therefore, along both boundaries, the velocity is zero, and both temperature and
concentration decrease from the hot to the cold wall. In this idealized model, we
assume both gradients are equal and constant.

Furthermore, we assume that the overall vertical concentration gradient in the tank
is completely taken up by the interfacial regions, while the solute concentration of the
fluid within each cell, away from the boundaries, varies about a mean value, as shown
in figure 4(b). With this assumption, we neglected the small vertical concentration
gradient within each cell, as shown by the measurement in figure 4(a). In addition, we
neglected the background vertical temperature gradient. With these simplifications,
the idealized model for each convecting cell consists of a long, shallow, rigid cell
differentially heated and salted at the two ends. Along the upper and lower boundaries,
both temperature and concentration increase linearly from the cold to the hot end.

The temperature difference, ∆T , between the two ends of the cell is the experimental
value. The concentration difference, ∆S , between the two ends is proportional to the
vertical concentration difference across each cell, which may be approximated by
(SL − SU)/N, where SL and SU are the initial solute concentration at the lower and
upper boundaries of the vertical tank and N is the total number of cells. We analyse
the linear stability of the parallel flow existing in the midsection of the tank for values
of ∆T and ∆S and the fluid properties Pr and Le.

This parallel flow model was used by Hart (1972) to consider the stability of thin,
non-rotating Hadley circulation. Later, Jeevaraj & Imberger (1991) used the same
model to estimate the velocity distribution in double-diffusive intrusions generated in
the same manner as in our experiments. In their calculations, the horizontal solute
gradient was neglected. Their ultimate purpose was to estimate the speed of advance
of the intrusions. The theoretical and experimental velocity distributions, as well as
the speed of advancement of the intrusion agreed well with each other. With their
results in mind, we assume our model will work just as well in the developing cells.

We note here that, in actual experiments, the thickness of each convection cell
for a given initial concentration gradient is proportional to ∆T (Chen et al. 1971),
therefore ∆T and ∆S for our model are not independent. In the stability analysis, we
regard them as independent quantities in order to determine the stability boundary,
from which the stability characteristics of the actual convection cells can then be
ascertained.

3.2. Analysis

Consider a shallow horizontal tank of thickness d and length L with temperature
and solute concentrations maintained at T0 and S0 at the left end and T0 + ∆T and
S0 + ∆S at the right end. Let the origin of a Cartesian coordinate system be at the
centre of the tank, with x in the direction of the positive temperature gradient, and
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Figure 5. Sketch of the model double-diffusive flow.

z vertically upward, as shown in figure 5. Linear distributions of temperature and
solute concentration are maintained along the rigid upper and lower boundaries with
constant slopes γ = ∆T/L and γS = ∆S/L.

The fluid is assumed to be Boussinesq and its density is linear in both temperature
and solute concentration, ρ = ρ0(1−α(T −T0)+β(S −S0)), in which α = −ρ−1

0 ∂ρ/∂T
and β = ρ−1

0 ∂ρ/∂S . The non-dimensional governing equations are

∇ · V = 0, (1)

∂V

∂t
+ Gr(V · ∇)V = −Gr∇p+ k

(
T − Gs

Gr
S

)
+ ∇2V (2)

Pr
∂T

∂t
+ Gr Pr(V · ∇)T = ∇2T , (3)

LePr
∂S

∂t
+ LeGr Pr(V · ∇)S = ∇2S. (4)

The thermal and solute Grashof numbers, Gr and Gs, and the Prandtl and Lewis
numbers are defined as

Gr =
gαγd4

ν2
, Gs =

gβγSd
4

ν2
, P r =

ν

κ
, Le =

κ

κs
,

in which g is the gravitational acceleration, ν is the kinematic viscosity, κ is the thermal
diffusivity, and κS is the mass diffusivity. The characteristic length, time, velocity,
pressure, temperature, and solute concentration are d, d2/ν, gαγd3/ν, ρ0(gαγd

3/ν)2, γd,
and γSd, respectively. The boundary conditions along the top and bottom wall are

V = 0, T = x, S = x, at z = ± 1
2
. (5)

For the basic state with steady parallel flow, V b = (ub(z), 0, 0), Tb = Tb(x, z), and
Sb = Sb(x, z), the solution are

ub =
1

6

(
1− Gs

Gr

)
F(z), (6)

Tb = x+
Gr Pr

6

(
1− Gs

Gr

)
G(z), (7)

Sb = x+
LeGr Pr

6

(
1− Gs

Gr

)
G(z), (8)
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Figure 6. Normalized basic-state velocity ub represented by F(z), and temperature Tb and solute
concentration Sb represented by G(z).

F(z) = z
(
z2 − 1

4

)
, (9)

G(z) =
z5

20
− z3

24
+

7z

960
. (10)

The vertical distributions of F(z), the normalized velocity, and G(z), the normalized
temperature and solute concentration, are shown in figure 6, both functions being
normalized with their respective maximum values. The temperature distribution is
stable in the middle of the fluid layer but unstable in the two layers bordering the
upper and lower boundaries. Hart (1972) analysed the linear stability of the thermal
convection problem (S = 0) with respect to transverse disturbances confined in the
(x, z)-plane or longitudinal disturbances confined in the (y, z)-plane separately. The
more recent stability considerations of Kuo et al. (1986) show that, for 0.14 < Pr <
0.45, the most critical instability is in the transverse mode and, for Pr > 0.45, it
is in the longitudinal mode. In both cases, the instability consists of two rows of
counter-rotating cells, one each near the horizontal boundaries. It is noted that the
relative magnitudes of Gs and Gr determine the direction of the flow.

With the addition of a horizontal solute gradient, γS , the following three pos-
sible modes of instability arise. For small γS , the unstable regions found in the
thermal convection case become stabilized by the solute gradient. The mode of in-
stability remains steady convection. As γS is increased, the mode of instability will
become double diffusive in these regions and onsets in the oscillatory mode. The
third possibility is the onset of a salt-finger instability mode occurring in the middle
section of the fluid layer where the vertical temperature gradient is stabilizing but
the solute gradient is destabilizing. We hope to determine the effects of the compet-
itive interactions among the various modes of instability by the following stability
analysis.

We analyse the stability characteristics in the longitudinal and transverse modes
separately, with a more-detailed presentation of the former. For the longitudinal
mode, the perturbation quantities denoted by primes are assumed to be periodic in
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the y-direction: 
u′
v′
w′
p′
T ′
S ′

 =


u(z)
v(z)
w(z)
p(z)
T (z)
S(z)

 exp(σt+ iky) (11)

in which k is the wavenumber. When these are substituted into the linearized equation,
and with some manipulations, we obtain the following stability equations:

[(D2 − k2)− σ](D2 − k2)w = k2

(
T − Gs

Gr
S

)
, (12)

[(D2 − k2)− Prσ]T = Gr Pr(u+ Tbzw), (13)

[(D2 − k2)− LePrσ]S = LeGr Pr(u+ Sbzw), (14)

[(D2 − k2)− σ]u = Gr ubzw, (15)

in which D = d/dz, and Tbz , Sbz , and ubz denote the vertical gradients T , S , and u in
the basic flow.

A similar set of stability equations are derived for the transverse mode. In this
case, perturbation quantities are assumed to be u′ = u(z) exp(σt + ilx), etc. The
non-dimensional wavenumber in the x-direction is denoted by l. The equations are

[(D2 − l2)− σ][D2 − l2]w = l2
[
T − Gs

Gr
S

]
+ il[ub(D

2 − l2)w − wu2
bz], (16)

[(D2 − l2)− Prσ]T = Gr Pr

(
ilubT +

iDw

l
+ Tbzw

)
, (17)

[(D2 − l2)− Prσ]S = LeGr Pr

(
ilubS +

iDw

l
+ Sbzw

)
. (18)

Only three equations are needed here because u can be expressed in terms of w
by the continuity equation in the transverse mode. These equations are solved by
the Galerkin method with u and w expanded into Chandrasekhar (1961) functions
and T and S into trigonometric functions. Converged solutions are obtained with 16
Galerkin expansion terms.

3.3. Results for the longitudinal model

The experiments were performed using a salt solution at a mean temperature of 27 ◦C
with Pr = 5.83 and Le = 94.2. The cell dimensions at the time of PIV measurement
are L ≈ 2.8 cm and d ≈ 0.6 cm. We now assume that, for L/d = 4.7, the parallel
flow model will give a good estimate of the actual flow structure. With ∆T = 6 ◦C,
α = 2.76 × 10−4 ◦C−1, and ν = 0.86 × 10−2 cm2 s−1, the experimental Gr = 1021. At
this time, there were eleven layers in the tank. The average ∆S across each layer is
∼ 0.27%. As shown by Jeevaraj & Imberger (1991), the intrusion ends in a region
where the fluid is essentially unperturbed with the initial solute gradient. We assume
the solute concentration at the hot wall is equal to that along the bottom of the
layer, and the concentration at the end of the intrusion is the mean concentration of
the layer. Then, ∆S ∼ 0.14%, and with β = 0.0072%−1 the experimental Gs = 603.
The stability calculations are done with Pr = 7 and Le = 3 and 100. We carried out
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Figure 7. Marginal stability curves for the longitudinal mode for Le = 3 at increasing values of Gs:
(a) 55, (b) 60, (c) 150, (d ) 250, (e) 350, and (f) 400. Note the increase of the salt-finger instability
bubble.

calculations for Le = 3 because it converges much faster than the Le = 100 case and
the stability characteristics can be mapped clearly on a Gr, Gs plot. For both cases,
the general stability characteristics are similar, and the perturbation streamlines at
onset are essentially the same.

The problem of calculating the onset of stability to the steady longitudinal modes
can be transformed to the purely thermal problems of Hart (1972) and Kuo et al.
(1986) as shown by Kerr in the Appendix.

3.3.1. Le = 3

For the thermal convection case, Gs = 0, the critical Gr is found to be 1942 with the
critical wavenumber k = 8.3 – in agreement with the results of previous investigators.
With the addition of a small γS at Gs = 55, the stability is enhanced somewhat with
Gr = 2200 at the critical state due to the stabilizing vertical solute gradient in the
upper and lower portions of the fluid layer. The marginal stability curve is shown in
figure 7(a). At this low value of Gs, the unstable solute distribution in the middle
portion of the fluid layer is not strong enough to cause any salt-finger instability.
As Gs is increased to 60 (figure 7b), a small instability island emerges at a much
reduced Gr = 120 with a smaller critical wavenumber k = 3.0. This is due to the
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Figure 8. Stability map for the longitudinal mode in terms of Gr and Gs for Le = 3.

onset of salt-finger instability in the mid-portion of the fluid layer. A stable interval,
125 6 Gr 6 2200, still remains. The thermal branch of the instability curve remains
similar to the one at Gs = 55 but with a higher critical Gr. The finger instability
island grows in area when Gs is increased to 150, as shown in figure 7(c), while the
upper branch shows oscillatory onset due to the double-diffusive instability in the
upper and lower portions of the fluid layer. The growth of the salt-finger instability
island continues through Gs = 250 (figure 7d ) until Gs = 350, when it is nearly in
contact with the upper double-diffusive branch (figure 7e). At Gs = 400 (figure 7f ),
the double-diffusive and salt-finger branches become connected. Through this increase
in Gs, the critical Grashof number Gr increases slightly while the critical wavenumber
k remains at 3.0.

These results are summarized in figure 8, in which the critical Gr is shown as
a function of Gs with regions of stability and instability clearly marked. The open
circles denote steady onset and the filled circles denote oscillatory onset of instabilities.
The stars denote the points for which detailed marginal stability curves have been
constructed, six of which are shown in figure 7. For 50 6 Gs 6 350, salt-finger
instability, stable, and double-diffusive instability regions alternate as the imposed
horizontal temperature gradient is increased. Beyond Gs = 350, salt finger is the only
mode of instability. We note here that the basic flow is reversed and the circulation is
clockwise for Gs > Gr. In this flow regime, a similar development of instabilities will
occur. The onset point is at Gr = 0 and Gs = 1942/Le, when instability in the upper
and lower portions of the fluid layer due to solute distribution alone will occur.

The perturbation streamlines in the (y, z)-plane at the marginal state for the onset
of salt-finger instability are shown in figure 9 for the case Gs = 95, Gr = 158, and
k = 3.0. The counter-rotating vortices are confined to the central portion of the fluid
layer with the width of each vortex approximately equal to the height of the layer.
The perturbed streamlines at the onset of double-diffusive instability at Gs = 250,
Gr = 2789, and k = 8.3 are shown in figure 10. There are two rows of vortices along
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Figure 9. Perturbation streamlines in the longitudinal plane at the critical state for Le = 3,
Gs = 95, Gr = 158, and k = 3. The instability is in the salt-finger mode.
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Figure 10. Perturbation streamlines in the longitudinal plane at the critical state for Le = 3,
Gs = 250, Gr = 2799, and k = 8.3. The instability is in the diffusive mode with oscillatory onset.

the upper and lower portions of the fluid layer, with almost three vortices in the
horizontal distance of the height of the layer.

3.3.2. Le = 100

For Le = 100, the flow becomes unstable at very low values of Gs. In order to
maintain a steady basic flow, solute advection must be balanced by solute diffusion.
To compensate for the drastically reduced value of the solute diffusion coefficient,
the vertical solute gradient must be increased. This is evidenced by the fact that, in
the basic flow, the solute variation is scaled with Le, equation (8). As a consequence,
when the Lewis number is increased, the onset of salt-finger instability occurs at ever
decreasing values of Gs. Furthermore, for a purely solute-driven convection, Gr = 0,
the onset of buoyancy instability occurs at Gs = 1942/Le = 19.4 for Le = 100. This
is shown in figure 11(a), where the marginal stability curve shows the critical Gr as
a function of the wavenumber k. The upper branch is for the salt-finger instability
while the instability region on the horizontal axis shows the onset of solutal buoyancy
instability. Both instabilities onset to steady convection. As Gs is increased, the solutal
buoyancy instability bubble grows, with the instability region enclosed by the curve.
Note that the critical wavenumber for the salt-finger branch is 3.0 while the critical
k for the solutal buoyancy branch is 8.3. The stable gap between the two branches
becomes smaller and smaller as Gs is increased. The perturbation streamline plot for
the salt-finger instability at the lowest Gr (Gr = 4.83 and Gs = 1.93) shows exactly
the same pattern as that shown in figure 9 for the Le = 3 case.

The stability map for Le = 100 is shown in figure 12(a). Because of the much-
reduced stable region, this map is presented in terms of logGr versus logGs. The
stability map for Le = 3 shown earlier in figure 8 is replotted in the logarithmic scale
and presented here as figure 12(b) for the purpose of comparison. In both graphs, the
diffusive instability region is denoted by A, the salt-finger instability region by B, the
solute buoyancy instability region by C, and the stable region by D. It is seen that
these two graphs have similar characteristics, with a much expanded unstable region
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Figure 11. Marginal stability curves for the longitudinal mode for Le = 100 at increasing values of
Gs: (a) 19.6, (b) 20, (c) 21, (d ) 30, (e) 300, and (f) 600, showing the growth of the instability bubble
arising for solutal instability when Gs < Gr.

for the Le = 100 case. In both graphs, the filled circles denote the stability boundary
for Gr > Gs and the crosses denote it for Gr < Gs. For Le = 100, figure 12(a),
along the upper horizontal branch of the stability curve the instability onsets into
steady convection for Gs 6 0.01. For 0.01 < Gs < 0.049, the onset is oscillatory
because of double-diffusive effects. For 0.049 < Gs < 0.217, there are alternating salt-
finger instability, stable, and diffusive instability regions as Gr is increased. Beyond
Gs = 0.217, the instability is in the salt-finger mode as long as Gr > Gs. The
perturbation streamlines at onset are similar to those shown in figures 9 and 10 for
the two modes of instability. For Gs > 19.6, the solutal buoyancy instability mode
will become the most critical for the region Gs > Gr, while salt-finger instability is the
most critical for the region Gr > Gs. For the experiments with the estimated values
of Gr = 1021 and Gs = 603 and the appearance of only one row of vortices in the
longitudinal plane within each convection cell, the instability we observed must be in
the salt-finger mode.

3.4. Results for the transverse mode

The results of a stability analysis of the transverse mode for Pr = 7 and Le = 3
are shown in a logGr versus logGs graph in figure 13. In the same figure, the
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Figure 12. Stability map for the longitudinal mode in terms of logGr and logGs for (a) Le = 100
and (b) Le = 3. For both cases: region A = diffusive instability, region B = salt-finger instability;
region C = solutal buoyancy instability; region D = stable region.

results for the longitudinal mode (figure 12b) are also shown for the purpose of
comparison. The transverse mode is shown with filled circles while the longitudinal
mode is open circles. It is seen that the stability boundaries for the transverse mode,
similar to the longitudinal mode, delineate four separate regions: diffuse instability
(A), finger instability (B), solute buoyancy instability (C), and stability (D). Unlike
the longitudinal mode, the diffusive instability in the transverse mode onsets into
oscillatory motion, even at Gr = 0. This is in agreement with results of Hart (1972)
and Kuo et al. (1986) for Pr > 0.14.

We found the critical value of Gr = 7037 for the onset of transverse instability
for Gs = 0. This value is approximately three times that found by Hart (1972) and
Kuo et al. (1986) for the thermal convection case. It is well known from the results
of Gallagher & Mercer (1965) and Ingersoll (1966) that the effect of shear greatly
suppresses the transverse mode of instability in thermal convection compared to the
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Figure 13. Stability map for the longitudinal and transverse modes for Le = 3 in terms of logGr
and logGs. Region A = diffusive instability, region B = salt-finger; region C = solutal buoyancy
instability; region D = stable region.

longitudinal mode. It is surprising that the results of Hart (1972) and Kuo et al. (1986)
show that the critical Grashof numbers for transverse and longitudinal instabilities
are only slightly different from each. We checked our method of analysis by applying
it to thermal convection in plane Couette flow. Our results for the small Reynolds
number cases agreed very well with those obtained by using the asymptotic expression
given by Ingersoll (1966).

The salt-finger instability region, indicated by B in figure 13, is similar to but smaller
than that for the longitudinal mode. The critical conditions for the onset of finger
instability are essentially the same for the transverse and the longitudinal modes,
as suggested by Kerr (2000), who reasoned that salt-finger instability should not be
influenced by shear in the same manner as the diffusive instability. The marginal state
is nearly Gr = Gs; finger instability occurs when Gr > Gs. This conclusion will very
likely remain true for Le = 100, as in the longitudinal mode, as shown in figures 12(a)
and 12(b).

In our experimental observations, at the time when the vortices in the longitudinal
plane are clearly in view, no comparable structures are seen in the transverse plane
(see figures 3b and 3c). There are some faint circular streaklines in the transverse
plane, as shown in figure 3(b). These may be the manifestations of finger instability
somewhat masked by the primary circulation.

4. Summary and conclusions
The results of our experiments show that a secondary motion consisting of a row of

vortices in the longitudinal plane with axes aligned in the direction of the temperature
gradient appears shortly after the onset of primary convection cells. Velocity vectors
obtained by PIV indicate that the speed of secondary motion is approximately one-
half that of the primary motion. From the constant vorticity contours, the average
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wavelength of the vortex pairs is approximately 0.8D. This observation is consistent
with the appearance of about 20 particle streaks in the horizontal plane of the
experiments of Chen & Chen (1997).

A linear stability analysis is applied to a parallel flow model of a steady, double-
diffusive convection in a long, horizontal shallow tank with imposed temperatures and
solute concentrations at the two ends. The velocity, temperature, and concentration
fields of this model flow for Gr > Gs are similar to those measured by Chen
& Chen (1997). The stability analyses were carried out for the longitudinal and
transverse modes separately. In both modes, two types of instability characteristic of
a double-diffusive system are excited, depending on the relative magnitudes of Gr
and Gs. At low values of Gs, the instability is in the diffusive mode with oscillatory
onset. The perturbation flow at onset consists of two rows of vortices. At higher
values of Gs, the instability is in the salt-finger mode with steady onset. For this
case, the perturbation flow at onset consists of a single row of vortices in the
middle of each cell. For the longitudinal mode, the extent of the stable and unstable
regions in the (Gr, Gs)-plane is greatly influenced by the value of the Lewis number.
The stable region in the Le = 100 case is much smaller than in the Le = 3 case.
However, the critical wavenumbers, k, of the two modes of instability remain constant,
irrespective of the Lewis number, at k = 8.3 for the diffusive mode and at k = 3.0
for the salt-finger mode. For Le = 100, under any practical conditions, the flow
is unstable. If Gr > Gs, as is the case in our experiments, the instability is in
the salt-finger mode and, for Gr < Gs, the instability is in the solute buoyancy
mode.

For the transverse mode, only the case for Le = 3 was considered. However, it
is reasonable to expect similar behaviour as Le is increased to 100. Results of the
stability analysis indicate that, at the experimental values of Gr and Gs, salt-finger
instability will occur in both the longitudinal and transverse modes. The experimental
particle traces and PIV velocity measurements give clear indications of vortices in the
longitudinal plane but not in the transverse plane. This may be due to a combination
of two factors. One is that the particle trace and velocity vectors in the transverse
plane include both the primary and secondary motion, thus making the vortices
harder to discern. The other is the possibility that the instability growth rate in the
transverse mode is smaller than that in the longitudinal mode. A more sophisticated
measurement and analysis of velocity vectors and a nonlinear stability analysis will
provide more definitive answers to this apparent discrepancy between the experimental
and theoretical results.

For Le = 100, the stability theory for the longitudinal mode predicts a critical
wavelength of λ = (2π/k)d = 2.09d, which is more than twice that of the experimental
value, λ = 0.8d. It was shown by Stern (1960) that the wavelength of the fastest
growing salt-finger instability at a supercritical state is proportional to (Gr Pr)−1/4D.
Since the experiments were carried out at supercritical conditions, it is reasonable to
expect the experimentally observed wavelength to be smaller than that predicted by
the stability theory.

The following conclusions are reached:
1. A realistic simulation of the convection generated by sideways heating of a fluid

stratified by a concentration gradient must be three-dimensional in nature in order
to account for the secondary motion.

2. A linear stability analysis of a parallel flow model of the actual flow clarifies the
physical mechanism causing the instability and predicts a flow pattern at onset in the
longitudinal plane similar to the one observed in the experiment.
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3. The theory predicts the critical wavelength at onset to be approximately twice
that of the observed value. This can be explained by the fact that the fastest growing
perturbation at the supercritical state has a wavelength that is proportional to
(Pr Gr)−1/4D.

We thank Mr. Youmin Yu for his help in performing the PIV analysis.

Appendix. Transformation of the model to the salt-free problem
By O. S. Kerr

Department of Mathematics, City University, Northampton Square,
London EC1V 0HB, UK

When a salt-stratified body of fluid is heated from a sidewall almost horizontal
convection layers can develop. These layers can undergo a secondary instability which
takes the form of convection rolls aligned with their axes perpendicular to the walls
(Chen & Chen 1997; Biello 1997). In the main paper further experiments are described
and a model for these secondary instabilities devised. Each layer is modelled as a
horizontal channel with imposed horizontal temperature and salinity gradients. With
no salinity gradient this would be equivalent to the models of Hart (1972) and Kuo et
al. (1986). We show that for steady marginal stability the model in the main paper for
longitudinal modes can be transformed to the earlier salt-free problem. This is similar
to transformations for double- and multiple-diffusive convection in a horizontal fluid
layer (Knobloch 1980; Terrones 1993).

Using the notation and numbering of the main paper with σ = 0, we subtract
Gr/Gs× equation (14) from (13) and define a new quantity T̂ = T − Gs S/Gr. We
rescale u to give û, defined by

û =
(Gr − LeGs)u

((Gr − Le2Gs)(Gr − Gs))1/2
,

and define

P̂ r =
(Gr − Le2Gs)Pr

Gr − LeGs , Ĝr =

(
(Gr − Gs)(Gr − LeGs)2

Gr − Le2Gs

)1/2

.

This gives the equations for the stability of the purely thermal problem but with

modified perturbation velocity component û, Grashof number Ĝr and Prandtl number

P̂ r. It is clear that, since Le > 1, this transformation only works if either Gr > Le2Gs or
Gr < Gs. This transformation can be used to calculate the boundaries corresponding
to steady instabilities of regions A and C in figure 12 by solving the purely thermal
problem.

For the case Gs < Gr < Le2Gs a similar transformation does exist with, for example

P̂ r being given by the magnitude of the above expression and the denominator in

the fraction in the square root of the expression for Ĝr being reversed. However the
problem is mapped onto an unphysical problem with the vertical mean temperature
gradient reversed, with cold fluid overlying warm fluid. The stability of this unphysical
system can also be analysed, giving instabilities corresponding to the steady salt-finger
instabilities of region B in figure 12. It should be noted that in the context of the
model proposed in the main paper for the sidewall heating problem, Gr and Gs are
not independent parameters.
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